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‘J’llis IJa})cr arlalyzcs  t h e  mot

critical,  clnbecldcd  systems.  ‘J’IIc

A bstrad

causes of safety-rdatccl softwa,m faults  ill safety -
rcsults  show that software faults  idmitif[ccl  as po-

tentially  hazardous to tltcsystmm arcdistrjbutcd  solnewllat  djffcrcnt]y  ovm l,llc set c)f
}jc)ssilJle  c]]orca  l]sestl  ]all]lc  )1]-safcty-rclatccl  softwarcfaults.  Safety-rdatcd softwarccr-
rcm  arcs how]l to ariscmost,  commonly fro]n (1) disc.  repa]lcies bctwcc]l  tlledocumcntcd
rcquirmnmlts  spcc.ific.atjo]ls  arid tllc rcqui]mnmlts  NCCXICC1  for corrcc.t  fu~lctio]lin?;  of tile
systmn Md (?, ) ]]lis~l]](lersta]lclillgs  c)f t,}ic software’s i]itcrfacc With tile rest  of tllc sys-
t,c]rl. ~1’hc pal)cr  uses tllesc results to ?;uidc  tllc idc]ltificaticj]-l  of strategies tc) ]~rcvcvlt
sur.11  errors  in otllcr  similar s.ystcms. ‘J’}Ic goal is to rcducc  safety-rdatcd softwarccrfors
Fi]ld  to CII?l?LIICC ~hC! SafCty Of COI1l])]CX, Cllllldd(!d  S~StCII)S.

1 0 ln~roduct)ion

‘1’lIis  paper examines 387 software faults  uncovcmd  during  i])tcgration  and systc)n lmtiI)g
of two spacecraft, Voyager and Cal  i lco, ‘J’l)e sta)ldard IIlltlt  clcfi]litions of a  jculi  a s  ‘(a
]nar]ifcstation  of an error in software . . . . Syllonylnous  wit}) L1/g;” of a]) cmor as “]]u]narl

actio]l  tJIat  rcsu]ts  i]] so f tware  co])taining  a fault;’) and of a jailurc as ‘(an cwcIIt in whicl) a
systcln  01 systcm  co]n])oIIc]It  clocs not ])crfor]n  a  r equ i red  functioI]  witlli]]  s])ccificd  ]ilnits’>
alc used IIcm [7, 8]. Eacl]  of tl)c 387 software faults was documented at tl]c  ti]nc of discovery
by  a fc)r]n dcscribil]g  the anomaly or failure tl}at indicatd  tllc  cxistcu]cc  of a softwtirc  fault.
‘J’IIc form also  rccorclcd  t h e  subscqucIIt  analysis aIId tlIc  mrrcctivc  actions  ta.km].

As part of the starldard  procdurc  for corrccti)]g  cad] rcportcxl  software fault, tl)c  failure
cffcc.t  of cacll is classified as negligible, sig]lifica]lt,  or catastrop]lic. ‘1’hose c.lassifid  as signif-
icar)t  or catastrophic arc i]]vcstigatccl  by a systmns  safety arlalyst as rcprcsc]]ti]]g  ])otcntia.1

..-
“Aut}lor’s  ]nai]ing address is l)cl~t of Com],ut,cr  Sciculc.c,  Iowa State U]iivcrsity,  A~ncs,  IA 50(IJ 1. ‘1’lic

rcmar-c.11 dcscribd  in tl)is l)a]]cr was  c a r r i e d  o u t  l)y (lIC Jc.t I’ro])\llsioIl  l,al)cmatcmy, {;alifcmlia  llistitutc o f
‘]k.]lllO]C)gy,  1111(]IY  a COlltract  Wit]l  NASA.
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safety IIazards [1 5], For this study  tlIc 74 (of 134) software faults  cm Voyager and  121 (of
253) scjftwarc  faults on Galileo docummtcd  as Ila.viIlg  potcl]tially  sigI1ificant  or catastrophic
cficcts arc classified as safety-mlatcd.

‘J’IIc sl)accc.rafts’  software is safety-critical ill that it lno]-liters and controls colnpollmlts
Lllat  CaII h involved in hazardous systc]n  bcllavior  [1 3]. ‘1’lIc software Xnust  cxccutc  in a
systcIn  col]tcxt  withcmi contributi~]g  u~lacccl)tal~lc r isk.

ltach spacecraft involves clnbcddccl  software distril~utcd  on several different flight  comput-
ers.  Voyager l)as rouglIly  18,000 lillcs of source coclc;  Galileo has over 22,000 [20]. ~~InlJCddCd
software is software that ruIIs 011 a colnputcr  SyStCII-I Lllat  is integral to a la.r.gcr  systcm whose
l)rilnary lmrposc  is l)ot cojnputationa]  [7]. ‘J’lIc s o f t w a r e  ollboard tllc s~)acccraft  c o n t r o l s
tlIc  cllginccring  and scicncc acquisition) l)roccsscs  required for il]tc]}~la]lc:tary lnissions.  ‘J’hc
software 011 botlI  spacecraft is lligl)ly i;]tcractivc ill tcrJns c)f the dcgrcc of ]ncssagc-passing
alnollg systcm  compollcnts,  LIIC need tc) res})ond ill real-tiInc to monitoring  of tlIc  harclwarc
and cnvirol)mcnt}  ant] tl]c complex tilninr; issues among parts of t}lc  systcm. ‘J’l Ic software
dcvclopmcl)t  for ca.cll  sl)acccraft  illvo]vcd  )nultip]c  teams wcnkilig  for a period of years.

‘J’IIc purpose of this paper is tc) iclcl]tify tlIc extent and ways in w}]icll  the cause/effect
relationships of safety-rclatccl software crrom difIcr  from tl}c cause/cfIcct rclatiollsllil)s  of non-
safety-related software errors. l’rclilnillary  results were reportccl  in [1 6]. III particular, tllc
analysis  slIows that IIulnal]  errors ill idclitifying  or ulidcrstalldil)g  func t iona l  and iljtcrfacc
rcquirmncnts  frcqucllt]y  lcacl  to safety-related software faults. ‘J1lIi  S distinction is used to
guide tllc idc]ltificatioll  of error mccllallis]ns  tllmugl)  which the coInmoII  human allcl  process
causes of the safety-rc]atccl software faults stuclicd  lIcrc  call bc targct,ccl during dcvclopmcnt.
‘-1’lJc goal ;s to jml)rovc  systcm safety by Illlclcrstzill(lillf;  and, where possible, Ycmovillg  tllc
prcval cni sources of safct y- rcl atccl  software crrols.

‘J’IIc pa})cr is organizcc]  as fcdlows, Scctioll  11 dcscril)cs  tllc  mctllodo]ogy  usml.  Section 111
}ncscnts  IJlc rcsu]t,s  of t,lIc analysis. Scctioll  IV indicates lIOW these rmults  fit into t}lc  context
of ~)rior work on software errors. Scctiol]  V discusses some pc)ssil~lc  strategies for rcducil]g
safety-rc]atccl software cmors  usi]lg  tllc  currclit  results. Scc.tiol) VI pmvidcs a sulnma~y allcl
idmltifics  future work.

11. Methodology

A. Overview

‘J’IIc study dcscribccl  lIcrc  cllaractcrizcs  tllc root causes of the safety-rc>latcd software faults
cliscovcrccl  cluring  integration and systcm tcsti]ig.  ‘J ‘IIC rcccnt  work lJy Nakajc)  aIId Kumc; on
software error cause/cflcct rclationsljil)s  offers a.11 apl)ropriatc  fralncwork  for classifying t}ic
software errors [1 8]. ‘J’}lcir  work is cxtcmdcd  IIcrc to account  for t))c aclditiona]  coln])lcxitics
o p e r a t i v e  ill large, safc:ty-critical,  c]nbcddccl  systcll  IS wit]) cvolvillg  rcxluirc]ncnts  drivcll  by
IIarclwarc  and cl]vironlnclltal  issues.

}’rcvious  studies of software errors have dealt primarily with fairly silnplc,  IIoII-cInbccldcd
s y s t e m s  ill falniliar a~)plicatio~)  clomaills  (SCC: Scctiol)  IV for a cliscussiol]).  ltcquircmmts
s~>cc,iflcatiolls  il] t,l Icsc st,udics  .gcIIcr:illy lIavc bccII assu Incd to be correct, ancl  safety issues
IIavc IIot b e e n  clistinguis]lccl  froln  prograln  corrcctl]css. ‘J’lIc wc)rk ~)rcsclltcrl lIcrc  illstcad
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builds on tl]at in [18] to al)alyzc  software mm’s i~l safety-critical, cmIJcdclcd  syskms wit]]
cvol vi] Ig rcquircrn  cnts.

Nakajo and Kumc’s  classif icat ion sclIcmc  al]alyzcs  three points  i~l the pat])  from a. soft-
ware defect backwards to its sourcm. ‘J’]lis  a,pl)roac}l  allows classification not only of tbc
doc.ulncni,  cd prc)gram  fault (tllc lna.nifcstation  of all error i]] tllc  software, c.g; ., an incorrect
i]ltcrfacc), but  also of tllc carlicv  IIllma]]  error (Lllc  root c.dust, e.g., a ll~istlllcl(>rstallclillg;  of
all intcrfacc  specification), al]d of tllc  even-car]icr l) IWC,CSS  flaws that cent, ributc to t}lc likc]i-
llood  of tlIc  error’s occurrence (e.g., illaclcquatc cc)lllllllll)icatioll  hctwccn systems cnginccring
al]d software dcvclopmcnt  tcalns). IOgurc  1 presents a sulnmary of these t]lrcc points ill
tl]c cause/effect analysis. ‘J’IIc c]a.ssificatio]] SCIICIIIC  tl)us  leads backwards ill tilnc from tllc

ohscrvcd  software fault to an analysis of the mot cause (usually a c(,]~l*],L~I)ict,tio]l  error or i?n
error ill recognizing or deploying rcquirclncl]ts),  to a]) anal ysis of the softwajm dcvcloplncIlt
~)roc,css. An overview of the classification SCIICIIIC, acljustcd  to tl)c IICCCIS  O( safety-critics],
c?nbcddccl  software, follows.

●  l’rogra?n  I’aults (I)ocumcntccl Softwalc  ljrrors)

A,

11.

c.

IIltcrllal  Faults (e.g., syntax)

lntcrfacc  Faults (illtcractions  w i t h  ot]]cr  systcm coml)oncnts,  such  as trallsfcr  o f
data or col]trol)

IPullctiona]  ]“aults  (operating faults: o]nissio]l o r  u]l]Icccssary  opcratioIls;  condi -
iio])al  faults: incorrect col]clitio]]  or li]])it va]ucs;  Lcl]avioral  faults: i]]corrcct  bc-
IIavior,  not conforming to rccluirclncnts)

●  1 luman l{;rrors  (Itoot  Chuscs)

A .  ~odi~lg  or Ecliting  Errors
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●

131.

132.

c l .

C2.

~ommunication  ltrrors Wit}lin  a TcaIn  (Illislllldclsstallclillg  software interface spec-
ifications)

communication Errors 1 lctwccn ‘lkams  (Illisllllclcrstarl  ding  harclware iIjterfacc spec-
ifications or other  team’s software spccificatiolls)

l?rrors in ltccognizing  l{ccluircmcnts  (lllisllllCIC:lstalldiIlg  specifications or problem
domain)

ltrrom  in ljcploying  Rcquircmcl]ts  (problems ilnplcmcl]ting  or translating rcquirc-
lncnts  into a dcsigll)

l’roccss  F l a w s  (1’laws ill Col]trol  of SystcIn  ~omplcxity  + lnaclcc]uacies
cation or 1 lcvclopmcnt  Mcthocls)

A. IIladcquatc  ~odc l~lspcction  slid  ‘1’csting  Methods

B].

112.

c1 .

C2.

IIladcquate  lntcrface  Specifications -i lnadcquatc  ~ollll]lllllicatiorl
ware developers)

in ~onlmuni-

(alnong  soft-

]naclcquatc  Intcrfacc Spccificatiol]s  + lnadcquatc  ~omlnullication  (Lctwccn soft-
ware and II ardware clcvclopcrs)

llcc]uircmcnts  Not lclcntifiecl or UI1dcrstood  -I lncolnplcte  l)ocumcntation

l{cquircmcllts  Not ]clcntificd  or lJII(ICMOOCI  -I llladcquatc  l)csign

IIy colnparing  common error mccllanislns  for tllc  software faults identified as potentially
hazardous with those of tlIc  otlIcr software faults, tl]c prevalent root causes of the safcty-
rclatcd program faults arc isolated, ‘J’lIc  classific.atiol] of tllc sourcm  of error is tllcn  applied
}ICI’C to determine countcrrncasurcs  wl]ic~l lnay IIrcvcnt  similar error occurrences in other
safety-critical, cmbcddcxl  systems. ‘J’his paper thus uscs tl]c  classification sclIcmc  to asscmb]c
an error profile of safety-related software crrmx  and to idcIltify  dcvcloIHncnt  mcthocls  by
wllicl] tlIcsc sources of error lnay be ab]c  to bc controlled ill silnilar  systems.

Il. Classification Critcra

l!acll  program fault was classified al)cl error causes a.ssigllcd  based on tlIc iIJ formation con-
tained ill t}lc s tandard report ing form that  doc.unlclits  cacll fault found  clurillg i])tcgration
and system testing. ~’his one-page form illcludcs  three textual clcscril)tions  whic]l  served as
tllc primary source for the classification of the fault. ‘J’IIc first description is of the observed
]JroblcIn  or f a i lu re ,  wr i t t en  by t,lIc indiviclua]  who  ohscrvcd  it duril~g intct;ration  or systcln
tcstil]g.  g’he second description is a later aI)alysis  of tllc  error by the individual rcsponsib]c
for tllc Inodulc or coInpoIIcIIt ill w})ich tllc problcIn occLIITcd. ‘1’llis  aIlalysis  Inay  also cx~)alld
or clarify tlIc  initial dcscriptio~]  of the prolJlcIn  by tllc originator. ‘J’IIC third part of the form
describes tl]c  corrective action  taken to fix tllc PI”O1.J]CJII  (e. g., a software and documc  Iltation
cllallgc).  It also dcscribcs  the test result, inspection, or review that confirIns  tlIc  adequacy
of tllc correction to prevent rccurrcncc. ~’llcrc arc also several cllcck-off  boxes 011 the form,
but tllcsc refer primarily to l~ardwarc  issues (cog,, vibratim)  tcstillg,  j)iccc-~mrt failure),

Additic))lal  pages (analysis results, test data, related Inmnos)  arc solnctimcs  attacllccl  to
t}lc form during tllc process of analysis and correction. ‘J’his  additional information was
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valuab]c  in the study,  as it provided insight into the huma~) errors and process wcakncsscs
tlI at tlIc spacecraft cngillccrs and programmers saw.

in gcnmal, the prilnary  criteria for classification was the clocumclItcd  judglncnt  of the
individuals who analyzed the cmor  and wdidatcd that tho  rcquirccl  change in fact prcvcntccl
the Iccurrcncc  of the anolnaly,  Occasionally, ovcrlapJ)ing  faults  or CYIOYS were clocuIncntcd
oIi a sillglc  form (c.g, both an intcrfacc fault and  a functio]]al  fault). in t,hosc cases,  the
classifica.tioll  reflects tllc programmer or cn,gi IIccr’s  judgmcl]t  as documented on the form
concerning which was the kcy cause of tllc observed l)roMcIn.  Additional discussion of error
catcgoriza,tion  is prcscntcd  in [18] . An ol~going,  multi-project invcstigatiol]  will acldrcss  the
issue of repeatability (do different analysts classify a givcvl  error in the sarnc  way?).

~lcarly,  the attribution of a kcy hulnan error and. a kcy process flaw to each software
fault ovcrsimp]ifics  the cause/effect rc]ationship.  1 lowcvcr, tlIc  idcntificatiol~  of tllesc factors
allows the characterization of safety-rc]atcd soflwarc errors ill  a. way that relates features of
the dcvclopmcllt  process and of the systcm uIIclcr dcvcloplncl!t  to the safety conscqucnccs
of those features. Similarly Ll]c association)) of cacl) software fault  with a human c!rror,  while
unrca]istic  (in what scl Isc is a failure to lnwdict  dctai]s  of systcm bcha,vior  an error?), allows
a. useful association hctwccn human factors (such as IJlisllll(lcrstal)(li)lg  the rcquirclncmts  or
t]Ic uljdcr’]ying  }JhySiCa]  realities) and t]lcir safety-rc]atcd conscqucJlccs,

11’1. Analysis of Safety -lhlated Software Defects

‘J’hc  six tables in the Appclldix  show the proportion and IIulnbcr  (ill parcnthcscs)  of noJl-
safct y-rclatccl  software faults, errors, arl d process fl a.ws as compared to safct y- Icl aid software
faults, errors, and process flaws for cac}~ of tl)c  two  s~)accc.raft.  ‘J’hc results arc sumlnarizcd  in
tl]c  text in a series of bar graphs, ‘J’he bar gral)lls  co]ltrast  the distribution of error causes for
all tllc safety-related faults with the distril.)uticnl  of error causes for all tllc llc)ll-safety-relatccl
faults. AJIy significant diffcrcnccs  bCtWCCJI  tllc data froln tllc two systems is d{scusscd  in the
text with rcfcrcncc  to tllc detailed tables ill tl]c Apl)cndix.

Safety-rclatccl software faults account for about IIalf of the total software faulis cliscovcred
during integration and systmn  testing 01”1  cac]l of tllc  two systc]ns studied (55% for Voyager,
48% for Galileo), I’cw inicrnal faults (e.g., coding  errors  intcr~la] to a software module) were
uncovcrcd  during integration and systc]n testing. AI] cxami?lation of software faults  fou]id
later during operations also shows fcw i]ltcrl)al  faults. It appears tl)at tllcsc coding errors
arc being dctcctcd and corrcctccl  before systcm testing begins. ‘1’hcy tlIus  arc outside t}Ic
scope of this paper and arc not discussed further here.

‘J’IIc  distribution of program faults for safety-related slid  non-safety-rc]atcd faults in tllc
two  SyStCJllS is S}1OWI)  in l’igurc  2. As can bc SCCII,  t}lc two  clistributioIls  display s imilar
proportions of internal, intcrfacc, and fu]lctional  faults. Ful]ctional  faul ts  (opcratin.g,  con-
ditic)llal,  or behavioral discrcpa.]lcics  froln  the ful)ctio]!al  rcquirclnmits)  account for almost
t}lrcc-quarters of both safety-rc]atcd and non-safety-rcla.tcd program faults. ‘J’hc  analysis
summar ized  in  Fig-urc 2 and dcta.ilcd  i]] Table 1 of t}}c Alq~clldix  also idcntiflcs  iwtcrjace
ja?llls (illcorrcct  interact ions with otl]cr systcln colnponcnts,  suclI as Lhc tilning  or traI]sfcr
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of data or control) as a significant problcm  (3570 of the safety-rclalmcl ]jrograln  faults on
Voyager; ] 9% on Galileo). ‘1’hc high incidence of intcrfacc faults in these complex, cmbcd-
dcd  systems contrasts with tlIc  low incidence of illtcrfacc faults  iIl earlier studies on simJd[!r,
standalone software. (See Section IV for a cliscussion of th;s issue. )

Figure 3 examines the predominant type of program fault, the functional fault, in lnorc
detail, A sigl]ificant. difference bctwccll  safety- related and lion-safety-related  collditiona]
faults is apparent. ~onditiona]  faults (nearly always crroIIcous  values on cc)nditiolls  or limits)
tend to bc safety-related in the two systems studied. Even thoug]]  adjusting tllc values of
limit variables during testing is considered to lx fairly rout;nc, tl}c  ease of cl]ange  obscures
~hc dificulty  of determining the appropriak  value and the safety-related conscqucnccs  of an
inappropriate limit value. Erroneous values (e. g., of dcaclbands  or delay t;mcrs) often involve
risk to the spacecraft by causi~]g  inappropriate triggering of an cIIor-Iccovcry  Icsponsc  or by
failing to trigger a nccclcd  IespoIIsc. ‘J’hc association LctwccIi  conditional faults and safety -
rclatcd  software errors emphasizes the importal]ce  c)f specifying the correct, values for any
data used in control decisions in safety-critical, cn lbcclclcd software.

Some diffcrcnccs  bctwccn  the distribution of faults on tl]c two spacecraft exist  (see ‘J’able
2). on Voyager fully IIalf  the safety-related functional faults arc attributable to behavioral
faults (the software behaving incorrectly). on Gali]co,  a slightly  greater pcrccllta.gc  is due
to operating faults (nearly always a required but omittcxl  opcratiol)  in tllc software) than
to behavioral faults. often the omitted opcratio])  involves the failure to perform aclcquatc
rcasonablcncss  checks on data input to a module. ‘J’llis  frcquclltly  results ill an error-rwcovcry
routine being called illa]~]>ro]>liatcly.

B. Relationships Between Program Faults and Human Errors

IIaving classified each program fault, tJIc second stcq) in th(! cause/effect analysis is to trace
backwards in time to the humau factcm illvc)]vcxl  ;]] tlIc  ])rograu]  faults  tl]at were discovcmxl



L

.

\

during  integration
hctwccm  IJc major

Operating ~oa(li~ional Bchavioml

~ Non-Safety-Rclateci ~ Safety-Rcla[cd

F’igurc 3: l)istribution  of lruncticmal  Faults

and system testing. Figure 4 and Figure 5 summarize the relationships
types of program faults and tllc  most frcquc])t contributing cn-ors for the

two systems studied. For i7LicrJacc  faults, tile lnajor IJuman  factors arc either communication
errors within a dcvclopmcnt  team or comlnunicatiol]  errors bctwccn a dcvclopmcnt  t e a m
and other teams. IJI the latter case, a furtl)cr distinction is lnadc bctwccn l]~is~l~l(lcrstal~clillg
harclwarc/software intcrfacc specifications and l~~is~ll-l(lcrstall(lillg  tllc  intcrfacc specifications
wit}] otllcr software componcllts.

Significant diffcrcnccs appear in the distribution) of error causes bet wccn safct  y-rcl  at ccl
and non-safety-rc]atcd intcrfacc faults. Figure 4 shows that the primary human error caus-
ing safety-related intcrjacc  faults is misunderstood lLar{luTarc/sojtularc  intwjam specifications
(65% on Voyager; 48% on Galileo). Exaln])lcs  arc faults caused by wrong assumptions about
tllc initial state of relays or by unexpected IIc!artbca.t  timing  patterns ill a particular operat-
ing  mode. On the other hand, the humal]  errors causing non-safety-mlatcd intcrfacc  faults
arc distributed more cvcn]y  among the tllrcc categories. ‘J’hc profiles of safety-related intcr-
facc errors assembled in Figure 4 and ‘J’able 3 of tl]c Appendix cm])hasizc the importance of
dcvclopcrs  understanding the software as a set of cmbcdclcd  components in a, larger systcm.

I’hc distribution of error causes for safety-related jzLnciio7mZ  jaults  also differs substan-
tially from the distribution of error causes for non- safety-related functional faults. Figure 5
identifies the primary cause of safety-rc]atcd junctional jaulfs  as errors ill recognizing (u?2-
dcrdanding)  the requirements (62% on Voyager, 79% on Galileo). On the other hand, non-
safety-related fun ct ion al faults arc more often cau scd by errors in clcployi]jg  (implementing)
tl)c  rcquircmcnts.

q’able 4 provides further detail. Safety-related conditional faults (erroneous condition
or limit values) arc almost always causecl by mrors il] recognizing rcguiwncnts. Errors in
recognizing rcquircmcnts  also cause safety-related o])crational  faults (usually the omission of
a required operation) and /d~aviora/  faults more often than errors in deploying rccluircmcnts.
g’able 4 reflects dcficicncics in the documented rcquircmcnts  as WC1l as instances of unknown
(at tlic time of rcquircmcnts  specification) but IIcccssary  rccluircmcnts  for the two spacecraft,
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]n summary, difJicultics  with rcquircmcnts  is tl]c most common human error causing the
safety-related software errors which  have persisted until integration and system testing in
these two systems. The tables point to errors in understanding the rcquircrnents  spccifica-
tio]ls  for the software/systcnl interfaces as tl]c lnost frequent cause of safety-rclatccl intcrfacc
faults. Similarly, errors in recognizing t}lc  rccluircmcnts  is the most frcqucllt  cause leading
to safety-related functional faults.

C. Relationships 13etwccn Human Errors and Process Flaws

]n tracing backwards from the program faults  to their sources, features of the sYstcm-
dcvclopmc~lt  process can bc identified which facilitate or cnab]c the occurrence of errors.
l)iscrcpancics  between the dificulty  of tllc problcln  and the mca.ns used to SOIVC it may
permit Ilazardous  software errors to occur [5].

‘1’he third step of the cause/effect analysis thcrcforc  associates a pair of process flaws wi$h
cacll program fault [1 8]. The first element in the pair identifies a process flaw or inadequacy
ill the control of the system  complexity (e.g., rcquircrncnts  which arc not discovered until
system testing). The second element of the pair identifies an associated process flaw in the
communication or devclopmeni methods used (c.g,, inl~)rccisc  or unsystelrratic  specification
methods) .

‘1’I]c two elements of the process-flaw J)air arc c]oscly  related. Frcqucnt]y,  as is discussed
in Sect. V, a solution to onc flaw will provide a solution to the rcla.tcd  flaw. 1~’or example, the
lack of standardization cvidcncccl  by an ambiguous intcrfacc specification (an inadequacy in
the control of systcm  comp]cxity)  and the gap in intcrteam communication cvidenccd  by a
misunderstood intcrfacc specification (an inadequacy in the communication methods used)
might Loth bc addressed by tllc project-wide a.cloption  of the same CASE tool.

1~’igurc 6 relates interface faults al]cl their human causes to process flaws involving systcm
comp]cxity.  The figure shows that the process flaw interfaces inadcguatcly identified or
understood, a flaw which involves control of system complexity, is often associated with
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Figure 7: Process Flaws (Communication/lJcvclolJlncnt  Methods) Causing lntcrface  Faults

both safct y-dated  and non-safct  y-related intcrfacc faults. 1 lowcvcr, safety-related and non-
safety-related intcrfacc faults differ in that anomalous hardware behavior is a more significant
factor in safety-related than in IIon-safety-related intcrfacc faults. It is often associated with
intcrfacc  design during systclm testing, a.nothcr  indication of a unstable software product.

Figure  7 relates intcrfacc  faults to process flaws invo]villg  communication or clevclopmcnt
rncthods.  Again, diflcrcnccs in the clistribution  of causes for safety-related and non- safety-
rclatcd  interface errors is cvidc]]t.  Undocumented interface requirements is the most frequent
flaw for non-safety-related intcrfacc faults, while  u?~docu?ncnf.cd  hardware behavior is the
most frequent flaw for safety-related interface faults.

‘J’ablcs 5 and 6 show that there arc significal)t  differences in the process flaws that  cause
errors bctwccn  the two spacecraft. ]ntcrfacc design during testing is involved in almost
one-fifth of the safety-critical intcrfacc faults on Voyager, but in none of them on Galileo,
‘Yhis  is because on Voyager a set of related hardware problems gcncratcd  nearly half the
safety-related intcrfacc faults. on the other Land, the probleln  of intcrfacc specifications
that  arc known but not documented is more common on Galileo. ‘J’his  is perhaps due to the
incrcascd complexity of the Galileo intcrfaccs, With regard to functional faults, although
missing rcquircme~lts arc a frequent process flaw OIL Loth spacecraft, on Voyager inadequate
design also occurs frequently, while on Galileo imprecise specifications often occur.

Figure  8 summarizes the relationships between process flaws involving control of system
complexity and fun ctional  faults. For  junctional faults,  rcquircmcnts  not identified and
requirements not understood arc the most common complexity-control flaws. Safety-related
functional faults arc more likely than non-safety-rc]atcd functional faults to be caused by
requirements which have not been identified (55Y0 vs. 41 Yo).

With regard to process flaws involving cm~~munication  or development methods, Fig-
ure 9 shows that missing requirements arc involved i]] nearly IJalf (42$XO) of the safety-related
functional faults, but  in only 25% of tl]c  non-safety-related functional faults, lmprccisc  or
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unsystematic spcci..caiions  arc also more often a factor in safety-related than in non-safety -
rclatccl  functional faults. ‘J’hesc  results sug~cst  tl]at tl)c sources of safety-rclatccl software
errors lic farther back in the software clcvcloplncl)t  process-in inadequate specification or un-
derstanding of requirements-whereas the sources of non-safety-related errors more  commonly
involve inadequacies in the design phase.

Figure  10 summa, rizcs these results graphically. It displays two of the cause/effect mech-
anisms that occur frcqucnt]y  in the two spacecraft, resulting ill safety-related interface faults
an c1 safct y-related functional faults.

IV. Comparison of Results with Previous Wc)rk

Although software errors and their causes have been studied extensively, tllc current work
differs froln  most of the prior investigations in the following four ways:
1 ) g’hc software c}loscn for analysis in most studies is not cmbcclclcd in a complex systcm  as
it is here. ‘J’hc consequence is that the role of intcrfacc specifications in controlling software
hazards IIas been undcrcstimatcd.
2) Un]ikc the currc]lt  papcrj  most stuclics  have analyzed fairly simple systems in familiar and
wcl]-understood application domains. Conscquc]ltly,  fcw software faults have been found
during system testing in most studies, lcacling  to a gap in knowledge regarding the sources
of these more-persistent and often more hw~ardous  faults.
3) Most studies assume that the rcquircmcnts  specification is correct. On the spacecraft,
as in maliy large, comp]cx systems, the requirements evolve as knowlcclgc  of the system’s
behavior and the problcm domain evolve. Similarly, most studies assume that requirements
arc fixed by the ti]nc that systems testing begins. ‘J’llis  leads  to a underestimation of the
impact of unknown requirements on the scope and schcdulc  of the later stages of the software
development process.
4) ‘J’hc distinction bctwccn causes of safety-critical ancl non-safety-critical software errors has
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not been adequately invcstigatccl,  Efforts to cllhancc systcm safety by specifically targeting
the causes of safety-related errors, as clistinguished  from the causes of all errors, can take
advantage of the distinct error mechanisms, as dcscribccl  in Sect. 5.

A brief description of the scope and results of soInc  related work is given below and
compared with the results prcscntcd in this paper for safety-critical, cmbcdclccl  comput[!r
systcms$

Nakajo and Kumc categorized 670 errors found during ihc software dcvclopmcnt  of two
firmwar-c  products for controlling measuring instruments and two  software products for in-
strument  mca.surcmcnt  programs [I 8]. Over 90% of the errors were either intcrfacc or func-
tional faults, similar to the results reported here.

Unlike the results described here, Nakajo  and Kumc found many conditional faults. It
may bc that unit testing, as on the spacecraft) finds  III~IIY  of the conditional faults  prior
to systcm testing. While the kcy human error on tllc spacecraft involved communication
bctwccn  teams, the kcy human error in their stucly involved communication within a dcvcl-
opmcnt  tca?n. ]Ioth  studies identified complexity tLncl documentation deficiencies as issues.
1 lowcvcr,  the software errors on the spacecraft tcndccl  to invo]vc  inherent technical complex-
ity,  whi]c the errors identified in the earlier study involved complex correspondences between
rcquircmcnts  and their implementation. Finally, the kcy process flaw that tkcy idmtificd
was a lack of methods to record known interfaces and dcscribc  known functions. in the
safety-c.ritical, cmbcdclcd software on the spacecraft, the flaw was more often a failure to
identify or to understand the rcquircmcnts.

Ostrand and Wcyukcr categorized 173 errors found during the development and testing
of an editor systcm  [21]. Only 2% of the errors were found during  systcm  testing, reflecting
the simplicity and stability of the interfaces ancl rcquircmcnts.  Most of the errors (61 Yo)
were found instead during function testing. Over half tllcsc errors were caused by Omkkms,
confirming the findings of the present stucly that omissions arc a major cause of software
errors,

Schncidcwind and IIoffmann  [24] categorized 173 errors found during the dcvclopmcnt  of
four small programs by a single progra~mmcr. Again, there were no significant interfaces with
hardware and little system testing. T’hc most frcc]ucnt  class of errors, other than coding and
clerical, was design errors. All three of tllc most common design errors--cxtrcmc conditions
ncg]cctcd,  forgotten cases or steps, and loop co~ltrol errors- arc also common functional
faults on the spacecraft.

Both  the findings prcscntcd  in [21, 24] and in this paper confirm the common cxpcricncc
that early insertion and late cliscovcry  of software errors maximizes the time and effort that
the correction takes.  Errors inserted in the rcquircmcnts and design phases take longer to
find and correct than those inserted in later phases (bccausc they tend to involve comp][!x
software structures). Errors discovered in the testing phase take longer to correct (bccausc
they tend to bc more complicated and di~cu]t  to isolate). I’his  is consistent with the results
in [20] indicating t}~at more severe errors take longer to discover than lCSS scvcrc  errors
during systcm-level testing. Furtllcrmorc,  this effect was found to bc more pronounced in
more complex (as measured by lines of code) software.

The work done by Endrcs is a direct forcrul]l]er  of Nakajo  and Kumc)s  in that Endrcs
backtracked from the error type to the tccllnica]  a]]d organizational causes which lcd to each
type of error [5], Moreover, bccausc  he studiccl  tile  systcm testing of an operating systcm, the
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software’s inimraction  with the llarclwarc  was a source of concern. FJnclrcs  noted the clifflculty
of precisely specifying functions] dcmancls  on the systems hcfore the programmer had seen
their effect on the dynamic behavior of the systc]n. IIis  conclusion that better tools were

needed to attack this problcm still holds true ciglltccn  years after he published his study.
Of the 432 errors that Endrcs analyzed, 46% were CITON in ~mdc~standillg  Or communi-

cating the problcm, or in the choice of a solution, 3870 were errors in implementing a solution,
and the remaining 16% were coding errors. ‘J’hcsc  results arc consistent with the finding here
that software with many systcm  interfaces displays a llighcr  pcrccntagc  of software errors
involving understanding rcquircmcnts  or the systcm implications of alternative solutions.

Eckhardt  ct al., in a study of software rcclundancy,  analyzccl  the errors in twenty indc-
pcndcnt  versions of a software component of an inertial navigation systcm [4]. ‘They found
that inadequate undcrstanc]ing  of the specifications or the underlying coordinate systcm  was
a major contributor to t}~c program faults causing coincident failures,

A d dY, ]Ooking a,t tbc types of errors that caused safety problems in a ]argc, real-time

control systcm, concluded that the design complexity inherent in such a systcm  requires
hidden interfaces which allow errors in non-critical software to aflcct safety-criticaJ software
[]]. ‘J’his  is consistent with Selby  and l~asili’s rcsu]ts  when they analyzed 770 software errors
during the updating of a library tool [25]. Of tllc 46 errors documented in trouble reports,
70% were categorized as “wrong” and 2870 as ‘(missing. “ ‘J’hey found that subsystems that
were highly interactive with other subsystems hacl  proportionately more errors than lC S S

interactive subsystems.
Chill arcgc ct al., classified defects from several operating systclns  and clatabasc manage-

ment systems according to type and trigger (c. g., bollndary condition,  excqtion handling)
etc. ) [2]. By comparing tllc distribution of defect types to tllc cxpcctccl  distribution for each
st agc  of development, the progress of a product’s d evelopmcnt  can bc monitored. Based on
the authors’ expcricncc with similar products, tllcy expect to find function defects peaking
at design testing, interface errors peaking at integration testing, and timing/serialization
errors peaking at systcm  testing for the systems they analyze. ‘J’hc prcvalcncc of intcrfacc
and timing errors is consistent with the data from the two spacecraft studied here. IIowever,
the spacecraft both continue to display functional defects throughout systcm testing. This
is probably attributable to the continued evolution of software rcquircmcnts  driven by the
hardware, the interplanetary cnvironrnent,  and unique mission science needs.

]Jcvcsc)]l  listed a set of common assumptions that arc often false  for control systems,
resulting in software errors [13]. Among these assumptions arc that the software specification
is correct, that it is possible to predict realistically the software’s execution environment
(e.g., the existcncc  of transients), and that it is possible to anticipate and specify correctly
the software’s behavior under all possible circumstances. g’hcse assumptions tend to bc
true for the simple systems in which software errors have been analyzed to date and false for
spacecraft and other large, safety-critical, crnbeddcd  systems. ‘1’bus, while studies of software
errors in simple systems can assist in understanding internal errors or some functional errors,
they are of ICSS help in understanding the causes of safety-related software errors, which tend
heavily to involve interfaces or recognition of complex requirements.

Similarly, standard measures of the internal  c~mplcxity  of mod~llcs  have limited l]scfulncss
in anticipating software errors during systcm  testing. It is not the internal complexity of a
module but t})c complexity of the moclulc’s  connection to its environment that yields the
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persistent, safety-rclatccl

V. Discussion

errors seen in the cmbcddccl  systems here [1 O].

‘J’hc  results in Sect. 111 indicate that  safety-rclatccl software defects arc distributed somewhat
diffcrcnt]y  over the set of possible causes than non-safety-related software defects in tllc
systems studied. Finding the prevalent causes  of safety-related software errors in these two
systclns  may help guide the dcvclopmcnt  of strategies to rcducc  such errors in other similar
systems. By targeting the causes of safety-related errors, systcm safety may be directly
cnhanccd.

‘1’hc results of the analysis of sa.fcty-rc]atcd software errors in the two spacecraft can be

i]ltcrprctcd  as guidelines for preventing such errors in future, similar systems.

1 .  ]“OCILS  o n  t h e  inierjaces bCtWCCll  the SOjlUMIY: ( L i d  thC SIJdeln in CZnCLhJZiIMJ i?]lt?  lNOblC7Tt

domain, since these interjaccs are a major source of sajety-relaicd sojlulare  errors.
‘J’hc  traditional goal of the rcquirenlcnts  analysis phase is the specification of the soft-

ware’s external interface to the user. ‘l’his  clcfinition  is inadequate when the software is
dccp]y  cmbcddcd in larger systems such as spa.cccraft,  advanced aircraft, air-trafic  control
units, or manufacturing process-control facilities. In such systelns,  the software is oftc!n
physically and logically distributed among various ]lardware  components of the systcm.  ‘J’hc
hardware involved may bc not only computers but also sensors, actuators, gyros, ancl scicncc
instruments [1 1].

Specifying the external behavior of the software (its transformation cjf software inputs
into software outputs) only makes sense if the interfaces bctwccn the systcm inputs (e.g.,
cnviron]mcnta]  conditions, power transic~lts)  and the software inputs (e.g., monitor data)
arc also spccificd,  Similarly, specifying the interfaces- cspccia]ly  the timing and clcpcndency
relationships- bctwccn the software outputs (e. g., star idcntifieation)  ancl systcm  outputs
(e.g., closing the shutter on the star scanner) is ncccssary.  [6, 12]

Systcm-dcvclopmcnt  issues such as timing (real-time activities, interrupt handling, fre-
quency  of sensor data), hardware capabilities amd limitations (storage capacity, power tran-
sients,  noise characteristics), communication links (bufIcr and intcrfacc formats), and the
cxpcctcd  operating cnvironlmcnt  (tcmpcraturc,  pressure , radiation) need to bc reflected in
the software rcquirerncnts  specifications bccausc  they are frequently sources of errors involv-
ing interfaces.

‘J’iming is a particularly di~cult  source of safety-related software intcrfacc errors since
timing issues arc so often integral to the functional correctness of safety-critical, cmbcd-
dcd systems,  ‘.l’iming dcpcndencics  (e.g., liow Iollg input data is valid  for making  control
decisions) should bc included in t}lc  software intcrfacc specifications. Analytical models or
simulations to understand systcm interfaces arc particularly useful for complex, cmbcddcd
systems.

2. ldentijy sajety-critical  hazards early in tlLc requirements analysis.
These hazards arc constraints on the possib]c  clcsigns  ancl factors in any contemplated

tradeoffs bctwccn  safety (which tends to encourage software simplicity) and incrcascd func-
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tiona]ity  (which tends to encourage software complexity) [12, 25]. Many of the safety-related
soft ware errors in the two spacecraft involve clat a ob jccts or proccsscs that  would bc t argctcd
for special attention using hazarcl-detection tccllniqucs  such as those dcscribcd  in [9, 13].
l?arly  detection of ihcsc safety-critical objects and incrcascd  attention to the software oper-
ations  that  usc thcm might forestall associated safety-related software errors.

3. Use jormal spccijication  techniques in addiiion to naiural-language  sojlware requirements
specifications.

J,ack  of precision and incomplete rcquircmcnts  ICCI  to many of the safety-rc]atccl software
errors seen here. Enough detail is needed to cover all circumstances that can bc envisioned

(component failures, timing  constraint violations, expired data) as WC1l as to document all
environmental assumptions (e.g., how C 1 OSC to the sun m instrument  will point)  and as-
sumptions about other parts of the systcm  (maximum transfer rate, conscqucnccs  of race
conditions or cycle slippage). ‘J’hc capability to dcscribc  clyna~nic  events, the tilning  of pro-
ccss interactions in distinct computers, dcccntralizcd  supervisory functions, etc., should bc
considered in chooosing a formal method [3, 6, 17, 22, 23, 26]. Since clnbcddcd software
systems arc often quite la.rgc, formally specifying or analyzing the entire systcm may not
bc feasible. Data on causes of safety-related errors may help guide the selection of the por-
tions  of the software most likely to benefit froln  tlic a.ddcd rigor of formal methods. In a
spacecraft currcntl  y un dcr dcvclopmcnt, for exalnplc,  error rccovcry software and critical
int crfaccs have been idcntiflcd  for cxpcrimcnts in formal spccifi cation.

~. l%omote injormal  communication afn.ong kams.
Many  safety-related software errors resulted from onc i]]diviclual  or team rnisunclcrstand-

ing a rcquircmcnt  or not knowing a fact about tllc  systcm that member(s) of another dc-
vclopmcnt  t cam knew. ‘J’hc goal is to modularize rcsl)onsibi]ity  in a dcvclopmcnt  project
witl]out  modularizing communication about the systcm under dcvclopmcnt.  ‘J’hc identifica-
tion and tracking of safety hazards in the two systems dcscribcd  here, for example, is clearly
best done across team boundaries,

5. As requirements evolve, communicai.e  the changes i.o the development and test teams.
This is both more important (bccausc  t}~crc arc more rcquirclncnts  cl]angcs  during design

and testing) and more difficult (bccausc  of the nu~nbcr  and size of the teams and the length of
the dcvclopmcnt  process) in a lar.gc, embcddccl  systcm than in simpler systems. in analyzing
the safety-related software errors, it is cvid(!nt  that the determination as to who needs to
know about a change is often made incorrectly. Frcqucnt]y,  changes that appear to involve
only onc team or systcm  component cnd  up a,frccting other teams or components at some
later date (sometimes as the result of incompatible changes in distinct units).

~hcrc is also a need for faster distribution of cllangcs  that have been made, with the
update stored so as to bc fingertip accessible. CASE tools oflcr  a possible solution to the
difficulty of promulgating change without increasing paperwork.

‘J’hc  prcvalcncc  of safety-related software errors involving misunderstood or missing rc-
quircmcnts  points up the inadequacy of col]sistcncy  checks of requircmc]lts  al]d code as a
means of demonstrating systcm  correctness [1 2]. Code that implements incorrect rcquirc-
mcnts is incorrect if it fails to provide nccdcd systcm  behavior.
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Similarly, generating test cases from misunderstood or missing rcquircrnents  will not test
systcm  correctness. q’raccabilityo  frcqllirclllcl-]tsa  l)d automatic test generation from spccifi-
cations offers only partial validation of complex, cmbcdclcxl systems. Alternative validation
and testing methods such as those dcscribcd  in [1 1, 13] offer greater coverage.

6. Include requirements for “dcjensivc  design” [1 9].
Many of the safety-related software errors involve inadequate software responses to cx-

trcmc conditions or cxtrcmc values. Anomalous hardware behavior, unanticipated states,
events out of order, and obsolete data all contribute to safety-related software errors on the
spacecraft.

lhrn-tirnc  safety c}lccks on the validity of input data, watchdog timers, delay timers, soft-
ware flltcrs,  software-imposed initialization conditions, additional exccpt,ion  handling, and
assertion c}]ccking can bc used to combat the many safct y- cri ti cal software errors involving
conditional and omission faults [13]. ltcquiremcnts  for error-hanclling, overflow protection,
signs] saturation limits, heartbeat and pulse frequency, maximum event cluration,  and sys-
tcm bcl)avior  under uncxpcctcd  conditions can bc addccl  and traced into the design. Many
safety-related functional faults involve error- rccovcry  rout incs being invoked inappropriate] y
bccausc of erroneous limit values or bad clata.

IIackward analysis from critical failures to possible causes oflcrs  onc check of how dc-
fcnsivc the rcquircmcnts  and design arc [14], l{cc~uircmcnts  specifications that account for
worst- case scenarios, models 1A at can predict tllc  range of possib]c  (rather than allowable)
values, and simulations that can cliscovcr uncxpcctcd  interactions before systcrn  testing con-
tribute to the systcm’s  dcfcnsc against hazards.

VI. Summary and Future Work

]n large, cmbcddcd systems such as the two spacecraft in this study, the software rcquirc-
mcnts change throughout the software dcvclopmcnt  process, even during systcm  testing.
‘J’his  is largely duc to unanticipated behavior , dynamic changes in the operating environ-
ment, and complex software/hardware and software/software interactions in the systems
being dcvclopcd.  Controlling rcquircmcnt  changes (and, IIcnce,  the scope and cost of devel-
opment)  is difllcult  since the changes arc often promptccl  by  an improved ul~dcrstanding  of
t}]c software’s ncccssary  interfaces with the physical components of the spacecraft in whic}l
it is cmbcclclcd.  Comp]cx timing issues and harclwarc  idiosyncrasies often prompt changes
to rcquircmcnts  or to design solutions.

‘1’hc  analysis prcscntcd  here of the cause/effect relationships of safety-rc]atcd software
errors pinpoints aspects of systcrn  complexity which  merit additional attention, Spcciflcally,
the results have shown that conditional faults (e.g., condition or limit va]ucs)  arc highly
correlated with safety-related software errors. Operating faults (especially the omission c)f
run-time rcasonab]cncss  checks on data) arc also IIighly  correlated with safety-related soft-
ware errors. Unknown, undocumented, or erroneous rcquircmcnts frequcntl  y arc associated
with safct y-rclat cd software errors as WC]]. 11 ard ware/software int crfaces h avc  been shown
to bc a frequent trouble spot because of the lack of communication bctwccn teams.

‘1’hc  results presented in this paper indicalx! a need for better methods to confront the
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real-worlcl issues of clcvcloping  safety-critical, cmbcclclccl  software in a complex, distributed
systcrn.  Future work will bc dircctcd  at incorporating knowledge of the distinct. error mech-
anisms  that  produce safety-related software errors into the rcquircmcnts  anaJysis  and vali-
dation  proccsscs. Follow-on stuclics  will cwaluatc  t})c aclcquacy  and repeatability of the error
classifications used here. Additional cxpcrimcnts  to test the proposed guidelines both in
similar, future systems and in a cross-section of clnbcddcd  software WOUIC1 be useful. Woxk
is also nccdcd on specifying how the results prcsmltcd  in this paper can bc used to predict
more prcciscly  what features or combinations of factors in a safety-critical, embedded systcm
arc likely to cause time-consurning and hazardous software errors.
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Appendix

iVon-sajcty-Ikl  utcd Sajciy-Iielatcd
Progrum hulls l’rogram  Faults

Voyager (60) Galileo (132) Voyager (74) Galileo (121)
“liiiri;:i-’—–-–-2!z  ‘-””” ( 1 )  4%” (5)””

-. o%.. _____ ____________(2j_
(o) 2%

lntcrfacc 33% (20) 18% (24) 35% (26) 19% (23)
Functional 65% ( 3 9 )  7 8 %  (103) .$5_% ( 4 8 )  79%- . . . . . . (96)

‘1’able 1: (hssijlcaiion  oj l’rogram Jkults
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_—. -.~---------------- . ..-. ———. --._—. ________
Non-S[ljely-lielct  tccl s~j~~y-lielated “n

II Functional Faults Functional Faults II

E_...___..__.=====:=_=_:_____________________  ___V o y a g e r  G’alilco (103) Voyuqer(dtl)  G a l i l e o  ( 9 6 )——-.—.-—.——- -————- .. —.—. — .— _ .—— —— ___ _____ .. J._ ____________ _______
O~erating 26% (10) 4 3 % (44) 19% (9) 43% (41)
Conditional 20% (8) 4% ( 4 )  31% (15) 18% (17)
IIchavioral 54% (21 ) 53% . -_... (?!1-.-2!3.-..-(:!1___ ____ __(55)__:09f 1—————

‘1’able 2: Classification oj Functional Yaulh

Nort-tSijety:llc l(~tc(i Sujdy-lkldfxl
hlterjacc  l“aults lntcrjacc  l“aults

voyager  ( 2 0 )  Galileo (24) voyager  ( 2 6 )  G’alilco ( 2 3 )..—
1. lntra-tc.am  Communication 5% - ( 1  ~ 33% ‘“ -[~) ““---~%” ”””-–  ““””(~)  ““””j;2-~—–--(5j-

11. lntertcam  Commullic,ation:
11 ardwarc/Soft,warc  lntcrface 30% (C) 3 8 % (9) 65% (17) 48% (11)
Software IIitcrfaccs 65% ( 1 3 )  29% (7) 2 7 % (7) 30% (7)--

g’able 3: liclationsllips  oj lioot Causes (Iluman Ihrors) 10 lntcrjacc Faults

N07i-.~i1jcty-itc[u tcii -”- ‘“- -”- ‘--” sifeFy:jl;iujcJ”” –””
l“urtct ional l’aults functional 1(’aulls

Voyager (39) Galileo (103) Voyager (J8) Galileo (96)
1. l{cquircmellt  Rccognit.ion:
Operating 10% ( 4 )  17% (17) 8% (4) 33% (32)
Con dition  al 8% (3) 0% (1) 25% (12) 16% (15)
1 lch aviora; 10% (4) 29% ( 3 0 )  29% (14) 30% (29)
‘J’otal 28% (11) 4 7 % (48) 62% (30) 79% (76)
11. ltcquircmcnt  Deployment:
Operating 15% (6) 26% ( 2 7 )  11% (5) 9% (9)
Conditional 13% (5) 3% (3) 6% (3) 2% (2)
IIchaviora] 44% (17) 24% (25) 21% (10) 9% (9)
Total 72% (28) 53% (55) 38% ( 1 8 )  2 1 %  (20}.

.- . . ..

g’able 4: licla.tionships  oj lioot Causes (Iluman  l;7>rors)  to Functional Faults

20



. ..— —. .—— —.. —— - .——.
A~oli-s(ljcty-ltcl(l  tc(l safety- liclutccl

Inkrjm hllh lntcrjace  Fads
V o y a g e r  Galilco(2~)  V o y a g e r  G a l i l e o

1, Conl,rol of System Conlplcxity:  -
—.

interfaces not undcmtood 90% (~8) 83% (20) 54% (14) 87% (20)
IIardwarc anomalies 10% (2) 17% ( 4 )  46% (12) 13% (3)—_——._.—— .—_-—_— — ..-__—. .—. _ .—. —._.. . -. —.- ._
11. ColllnluIlicatioI1  /lJevclo~JI1lcllt:

— . .. —. ——. -

lnt crfacc specifications 35% (7) 42% (10) 8% (2)  35% (8)
lntcrfacc design lags 35% (7) 4% ( 1 )  19% (5) o% (o)
lntcrl,cam  communication 20% ( 4 )  21% (5) 27% (7) 35% (8)
llnclocumc]ltcd  hardware 10% (8) 46%(2) 33% .  -.=-====.:.(  !.2).._!!fi._=g. .-—.. . .——. .—. .

Tablc5:  l’roccss.WLuM  Cousing  lntcfface  Faults

.
No?l-,s(ljety-l[cli  tc(l”” ‘“ -“’”sijciyxeiated-”
lf’unctional  J’aults Junctional 11’aults

V o y a g e r  Galilc:o  ( 1 0 3 )  V o y a g e r  (,/8) G a l i l e o. . ..—. .—— —.—-.. .— ___
1. Control of Systcnl Complexity:

.

ILcquiremcnts not identified 28% (11) 4 6 % ( 4 7 )  44% (21) 00% (58)
l{cquircmcnts  not understood 72% ( 2 8 )  54% (56) 56% (27) 40% (38)
11. Conlnmnication/llcvclopmcnt
Causingljrrorsin  llcquircmcnts
Recognition:
lmprccisc  specification 10% ( 4 )  18% (19) 21% (10) 38% (36)
Missing requirclncnts 18% (7) 28% (29) 42% (20) 42% (40)
Colllllll]Ilication/  l)evcloJ~lncl[t
Causing l’;rrorsin  ltequircments
l)c~doymcnt:
incomplete doc.umclitation 10% (4) 12% (12) 2% (1) 8% (8)
l’crsistcnt  cocling  errors 28% (11) 1 3 % ( 1 3 )  10% (5) 5% (5)
lnadcquatc  design 33% (13) 29% [30) 25% (12) 7% (7)

.- -— . ..——.

‘1’able 6: l’roccssl(’lauw  Causing l“unctional  Faults
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